6 resultados para Molecular sequence data

em Publishing Network for Geoscientific


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Zooplankton play an important role in our oceans, in biogeochemical cycling and providing a food source for commercially important fish larvae. However, difficulties in correctly identifying zooplankton hinder our understanding of their roles in marine ecosystem functioning, and can prevent detection of long term changes in their community structure. The advent of massively parallel Next Generation Sequencing technology allows DNA sequence data to be recovered directly from whole community samples. Here we assess the ability of such sequencing to quantify the richness and diversity of a mixed zooplankton assemblage from a productive monitoring site in the Western English Channel. Methodology/Principle Findings: Plankton WP2 replicate net hauls (200 µm) were taken at the Western Channel Observatory long-term monitoring station L4 in September 2010 and January 2011. These samples were analysed by microscopy and metagenetic analysis of the 18S nuclear small subunit ribosomal RNA gene using the 454 pyrosequencing platform. Following quality control a total of 419,042 sequences were obtained for all samples. The sequences clustered in to 205 operational taxonomic units using a 97% similarity cut-off. Allocation of taxonomy by comparison with the National Centre for Biotechnology Information database identified 138 OTUs to species level, 11 to genus level and 1 to order, <2.5% of sequences were classified as unknowns. By comparison a skilled microscopic analyst was able to routinely enumerate only 75 taxonomic groups. Conclusions: The percentage of OTUs assigned to major eukaryotic taxonomic groups broadly aligns between the metagenetic and morphological analysis and are dominated by Copepoda. However, the metagenetics reveals a previously hidden taxonomic richness, especially for Copepoda and meroplankton such as Bivalvia, Gastropoda and Polychaeta. It also reveals rare species and parasites. We conclude that Next Generation Sequencing of 18S amplicons is a powerful tool for estimating diversity and species richness of zooplankton communities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study focused on the bacterial diversity associated with microbial mats of deep-sea cold seeps at the Norwegian continental margin. Study sites included the Storegga and Nyegga areas as well as the Håkon Mosby mud volcano, where the mats occurred at temperatures permanently close to the freezing point of seawater. Two visually different mat types, i.e. small gray mats and extensive white mats, were studied with the aim to determine the identity of the mat-forming sulfide oxidizers, and to investigate which environmental factors (e.g. sulfate reduction and methane oxidation rates) shown here could explain the observed diversity. Sequence data have been submitted to the EMBL database under accession No. FR847864-FR847887 (giant sulfur bacteria), No. FR827864 (Menez Gwen filament; see Supplementary Material) and No. FR875365-FR877509 (except FR875905; remaining partial sequences).

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present data set provides an Excel file in a zip archive. The file lists 334 samples of size fractionated eukaryotic plankton community with a suite of associated metadata (Database W1). Note that if most samples represented the piconano- (0.8-5 µm, 73 samples), nano- (5-20 µm, 74 samples), micro- (20-180 µm, 70 samples), and meso- (180-2000 µm, 76 samples) planktonic size fractions, some represented different organismal size-fractions: 0.2-3 µm (1 sample), 0.8-20 µm (6 samples), 0.8 µm - infinity (33 samples), and 3-20 µm (1 sample). The table contains the following fields: a unique sample sequence identifier; the sampling station identifier; the Tara Oceans sample identifier (TARA_xxxxxxxxxx); an INDSC accession number allowing to retrieve raw sequence data for the major nucleotide databases (short read archives at EBI, NCBI or DDBJ); the depth of sampling (Subsurface - SUR or Deep Chlorophyll Maximum - DCM); the targeted size range; the sequences template (either DNA or WGA/DNA if DNA extracted from the filters was Whole Genome Amplified); the latitude of the sampling event (decimal degrees); the longitude of the sampling event (decimal degrees); the time and date of the sampling event; the device used to collect the sample; the logsheet event corresponding to the sampling event ; the volume of water sampled (liters). Then follows information on the cleaning bioinformatics pipeline shown on Figure W2 of the supplementary litterature publication: the number of merged pairs present in the raw sequence file; the number of those sequences matching both primers; the number of sequences after quality-check filtering; the number of sequences after chimera removal; and finally the number of sequences after selecting only barcodes present in at least three copies in total and in at least two samples. Finally, are given for each sequence sample: the number of distinct sequences (metabarcodes); the number of OTUs; the average number of barcode per OTU; the Shannon diversity index based on barcodes for each sample (URL of W4 dataset in PANGAEA); and the Shannon diversity index based on each OTU (URL of W5 dataset in PANGAEA).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A uniform chronology for foraminifera-based sea surface temperature records has been established in more than 120 sediment cores obtained from the equatorial and eastern Atlantic up to the Arctic Ocean. The chronostratigraphy of the last 30,000 years is mainly based on published d18O records and 14C ages from accelerator mass spectrometry, converted into calendar-year ages. The high-precision age control provides the database necessary for the uniform reconstruction of the climate interval of the Last Glacial Maximum within the GLAMAP-2000 project.